CLASS 20

BJT PARAMETERS AND BIASING

output characteristic

In the active region, $\mathrm{I}_{\mathrm{C}} \approx \mathrm{I}_{\mathrm{E}}$ and is independent of $\mathrm{V}_{\mathrm{BC}} \cdot \mathrm{I}_{\mathrm{C}} \approx \alpha_{\mathrm{o}} \mathrm{I}_{\mathrm{E}}$

Observations

- $\mathbf{V}_{\mathrm{BC}} \uparrow \mathrm{I}_{\mathrm{C}} \uparrow$ because when $\mathrm{V}_{\mathrm{BC}} \uparrow$, the $\mathrm{B}-\mathrm{C}$ junction becomes more rb. The width of the effective B region (outside depletion) becomes smaller. Recombinations \downarrow. Hence, $\mathbf{I}_{\mathbf{C}} \uparrow$.
- At a fixed $V_{B C}$, if $I_{E} \uparrow I_{C} \uparrow$. As $I_{C}=\alpha_{0} I_{E}$ and $\alpha_{0} \approx \mathbf{1}, \mathrm{I}_{\mathrm{C}} \approx \mathrm{I}_{\mathrm{E}}$. Thus, $\mathrm{I}_{\mathrm{E}} \uparrow \mathrm{I}_{\mathrm{C}} \uparrow$.
- If $\mathbf{V}_{\mathrm{BC}}=0$, there still exists a depletion region at the $B-C$ junction. Fixed -ve ions in the depletion region of the C can still manage to attract the holes from B to cross the B-C junction and enter C. I_{C} exists. If the $V_{B C}$ becomes -ve (i.e. V_{C} is more + ve than V_{B}), the width of the depletion region \downarrow and $I_{C} \downarrow$. When $V_{C B}=V_{O N}$, the depletion region's width ≈ 0. At this time, the $B-C$ junction becomes $f b$ and $I_{C}=0$.

Distribution of minority E-B depletion $\mathrm{B}(\mathrm{n}) \quad \mathrm{B}-\mathrm{C}$ depletion carriers in B for a pnp region transistor.
(a) Active mode for $V_{B C} \geq 0$.
(b) Saturation mode with both E-B and B-C junctions fb.

(b)

Observations

- Since the difference in the slope is not large when $V_{B C}>0$ and $V_{B C}=0$, I_{C} does not change much.
- $\mathbf{I}_{\mathbf{C}}=0$ when one small forward voltage is supplied across the $B-C$ junction ($\mathrm{V}_{\mathrm{CB}} \approx 1 \mathrm{~V}$ for Silicon). Under this condition, the transistor is in the saturation region.
- The fb supplied to the $B-C$ junction will increase the hole density at $x=W$ until it reaches a value equals to the hole density at $\mathrm{x}=0$. This means that the hole gradient at $x=w$ and consequently I_{C} will reduced to 0 .
$\mathrm{I}_{\mathrm{Cp}}=\mathrm{A}\left[-\left.\mathrm{qD}_{\mathrm{p}} \frac{\mathrm{dp}_{\mathrm{n}}}{\mathrm{dx}}\right|_{\mathrm{x}=\mathrm{W}}\right], \mathrm{I}_{\mathrm{Cn}}=\mathrm{A}\left[\left.\mathrm{qD}_{\mathrm{C}} \frac{\mathrm{dn}_{\mathrm{C}}}{\mathrm{dx}}\right|_{\mathrm{x}=\mathrm{x}_{\mathrm{C}}}\right]$
$\approx \frac{\mathrm{qAD}_{\mathrm{p}} \mathrm{P}_{\mathrm{no}}}{\mathrm{W}} \mathrm{e}^{\left(\mathrm{qV} \mathrm{EB}_{\mathrm{EB}}\right) / \mathrm{kT}}$

$$
=\frac{\mathrm{qAD}_{\mathrm{C}^{\mathrm{n}} \mathrm{Co}}}{\mathrm{~L}_{\mathrm{C}}}
$$

Important observations:

$$
\mathbf{I}_{\mathbf{E}}=\mathbf{I}_{\mathbf{B}}+\mathbf{I}_{\mathbf{C}}
$$

For the CB,

$$
\mathbf{I}_{\mathrm{C}}=\alpha_{\mathbf{0}} \mathbf{I}_{\mathbf{E}}+\mathbf{I}_{\mathrm{CBO}}
$$

where $I_{C B O}$ is the $C-B$ current when E is open
($\mathrm{I}_{\mathrm{E}}=0$) and it is a minority carrier current.
$I_{C}=\alpha_{0}\left(I_{B}+I_{C}\right)+I_{\text {CBO }}$
$\mathrm{I}_{\mathrm{C}}\left(1-\alpha_{0}\right)=\alpha_{0} \mathrm{I}_{\mathrm{B}}+\mathrm{I}_{\mathrm{CBO}}$
$\mathbf{I}_{\mathrm{C}}=\left(\alpha_{0} \mathbf{I}_{\mathrm{B}}+\mathrm{I}_{\mathrm{CBO}}\right) /\left(1-\alpha_{0}\right)=\left[\alpha_{0} \mathbf{I}_{\mathrm{B}} /\left(1-\alpha_{0}\right)\right]+$
$\left[\mathrm{I}_{\mathrm{CBO}} /\left(1-\alpha_{0}\right)\right.$]

$\alpha_{0} /\left(1-\alpha_{0}\right)=\beta_{\mathrm{DC}}$
$\beta_{\mathrm{DC}}=\Delta \mathrm{I}_{\mathrm{C}} / \Delta \mathrm{I}_{\mathrm{B}}$
$\mathrm{I}_{\mathrm{CEO}}=\mathrm{I}_{\mathrm{CBO}} /\left(1-\alpha_{0}\right)$

where $I_{\text {CEO }}$ is the leakage current when B is open ($I_{B}=0$) and it is a minority carrier current.

$$
\mathbf{I}_{\mathrm{C}}=\beta_{\mathrm{DC}} \mathbf{I}_{\mathrm{B}}+\mathbf{I}_{\mathrm{CEO}}
$$

$\mathbf{I}_{\mathrm{CEO}}=\mathbf{I}_{\mathbf{C B O}} /\left(1-\alpha_{0}\right)=\mathbf{I}_{\mathbf{C B O}} /\left\{1-\left[\beta_{\mathrm{DC}} /\left(1+\beta_{\mathrm{DC}}\right)\right]\right\}$
$\mathbf{I}_{\mathrm{CEO}}=\mathrm{I}_{\mathrm{CBO}}\left(1+\beta_{\mathrm{DC}}\right) /\left\{\left(1+\beta_{\mathrm{DC}}\right)-\beta_{\mathrm{DC}}\right\}=\mathrm{I}_{\mathrm{CBO}}(\mathbf{1}$
$\left.\stackrel{+}{\beta_{\mathrm{DC}}}{ }_{\mathrm{DC}}\right){ }_{\alpha_{0}} /\left(1-\alpha_{0}\right) ;$ this expression shows that $\beta_{\mathrm{DC}}>1$
$\alpha_{0}=\beta_{\mathrm{DC}}\left(1-\alpha_{0}\right)=\beta_{\mathrm{DC}}-\beta_{\mathrm{DC}} \alpha_{\mathrm{o}}$
$\alpha_{0}\left(1+\beta_{\mathrm{DC}}\right)=\beta_{\mathrm{DC}}$
$\alpha_{0}=\beta_{\mathrm{DC}} /\left(1+\beta_{\mathrm{DC}}\right)$; this expression shows that
$\alpha_{0}<1$
$\alpha_{0} \approx 1$. Thus, $\beta_{\mathrm{DC}} \gg 1$.
If $\alpha_{0}=0.99, \beta_{\mathrm{DC}}=0.99 /(1-0.99)=99$.
If $\alpha_{0}=0.998, \beta_{\mathrm{DC}}=0.998 /(1-0.998)=499$.
These results show that a small change in I_{B} will cause a large difference in I_{C}.
From the output characteristics of the $C E$, there is still output current, I_{C}, flowing although $I_{B}=0$ and this is the $I_{C E O}$ which is the leakage current when $I_{B}=0$.

BIASING

- The BJT must be biased in order to operate it as an amplifier.
- A DC operating point must be set so that the signal at the input terminal can be amplified and reproduced without any distortion at the output terminal.
- For the CE amplifier, the DC operating point is I_{C} and $V_{C E}$. The operating point must be in the active region in order for the BJT to operate as an amplifier.
- The DC operating point is known as the quiescent (Q) point. For the $C E$ amplifier, the Q point is $I_{C Q}$ and $V_{C E Q} \cdot$
- With the correct biasing, the circuit need not be changed or redesign when another transistor from the same type is substituted or when the temperature changes. Hence, a biasing circuit needs to be stable.

To determine the operating point:

- The DC load line is drawn on the output characteristic to determine the operating current and voltage of the circuit. The intersection of the load line with the I and V axis depends on the circuit's schematic.
- A DC biasing point / quiescent (Q) point is determined from the load line in the active region. The Q point is a point on the load line that represents the current and voltage at the output of a transistor when there is no AC signal. The stability of a biasing point is influenced by the change in the parameters (as an example: $\beta_{D C}$) when the transistor is replaced by another transistor of the same type or by the change in temperature.

From Floyd, Electronic Devices, Sixth Edition.

- BIPOLARJUNCTION TRANSISTORS (BJTs)

PARAMETERS THAT CAN CHANGE THE Q-POINT

- The DC current gain of the $C E, \beta_{D C}$ or $h_{F E}$, for one type of transistor is typically available in a large range, $h_{F E}=50$ to 300 . The large range of β_{DC} or \mathbf{h}_{FE} influences the transistor's biasing as
- $I_{C}=\beta_{D C} I_{B}$ (if the leakage current is neglected). If I_{B} is fixed and $\beta_{D C}$ is varied, I_{C} will also change. $I_{C Q}$ and $V_{C E Q}$ will change, i.e. the operating point changes.
The transistor might not be operating in the active region.
- Temperature can also change the operating point as the temperature changes the number of minority carriers. This can be seen from the expressions:

$\mathbf{I}_{\mathrm{C}}=\beta_{\mathrm{DC}} \mathbf{I}_{\mathrm{B}}+\mathbf{I}_{\mathrm{CEO}}=\alpha_{0} \mathbf{I}_{\mathrm{E}}+\mathbf{I}_{\mathrm{CBO}}$ where the $I_{C E O}$ and $I_{C B O}$ are the minority carrier currents.
- The dc load line can be determined by analyzing the transistor circuit. The transistor load line is linear and is in the form y $=m x+c$. By looking at the output characteristic of the $\mathrm{CE}, \mathrm{y}=\mathrm{I}_{\mathrm{C}}, \mathrm{m}=$ slope of the load line, $x=V_{E C}$ region and $c=$ intersection of the load line with the I_{C} axis. The load line intersects the V_{EC} axis at $\mathrm{I}_{\mathrm{C}}=\mathbf{0}$.
- When $I_{B Q}$ is known, the value of $I_{C Q}$ and $V_{E C Q}$ can be determined by the intersection of the dc load
 line with the $I_{B Q}$ curve.
$\mathbf{V}_{\mathrm{EC}}+\mathbf{I}_{\mathbf{C}} \mathbf{R}_{\mathrm{C}}-\mathbf{V}_{\mathrm{CC}}=\mathbf{0}$
$\mathbf{y}=\mathbf{m x}+\mathbf{c}$
$\mathbf{y}=\mathbf{I}_{\mathbf{C}}, \mathbf{x}=\mathbf{V}_{\text {EC }}$
$\mathbf{I}_{\mathrm{C}}=-\mathbf{V}_{\mathrm{EC}} / \mathbf{R}_{\mathrm{C}}+\mathbf{V}_{\mathrm{CC}} / \mathbf{R}_{\mathrm{C}}$
$\mathbf{m}=-\mathbf{1} / \mathbf{R}_{\mathrm{C}}, \mathbf{c}=\mathbf{V}_{\mathbf{C C}} / \mathbf{R}_{\mathrm{C}}$
When $I_{C}=0, V_{E C}=V_{C C}$.
When $V_{E C}=0, I_{C}=V_{C C} / R_{C}$.

- If the quiescent B current is $I_{B Q}$, then the operation point is Q_{1} with output C current, $I_{\text {CQ1 }}$, and $E-C$ voltage, $\mathrm{V}_{\text {CEQ1 }}$.
- If the quiescent B current is $20 \mu \mathrm{~A}$, then the operation point is Q_{2} with output C current, $I_{\text {CQ2 }}$, and E-C voltage, $\mathrm{V}_{\text {CEQ2 }}$.
- If the quiescent B current is $10 \mu \mathrm{~A}$, then the operation point is Q_{3} with output C current, $\mathrm{I}_{\mathrm{CQ} 3}$, and $\mathrm{E}-\mathrm{C}$
 voltage, $\mathbf{V}_{\text {CEQ3 }}{ }^{\circ}$

If inaccurate \mathbf{Q} is chosen:

- Transistor can be driven into saturation region (if \mathbf{Q} is too close to the saturation region)
- Transistor can be driven into cut-off region (if Q is too close to the cutoff region)
- Transistor can be driven into both saturation and cut-off region (the \mathbf{Q} point might be at the centre but the signal is too large)

The result is a distorted signal at the output. This defeats the purpose of using the amplifier which is to have an amplified replica of the input signal at the output.

From Floyd, Electronic Devices, Sixth Edition.

(a) Transistor is driven into saturation because the Q-point is too close to saturation for the given input signal

(b) Transistor is driven into cutoff because the Q-point is too close to cutoff for the given input signal.

(c) Transistor is driven into both saturation and cutoff because the input signal is too large

- FIGURE 5-6

Graphical load line illustration of a transistor being driven into saturation and/or cutoff.

DC BIASING CIRCUITS

1. Fixed-current/Base biasing circuit - Unstable
2. Collector-Base/Collector feedback biasing circuit - Stable
3. Voltage division biasing circuit - Stable and the most popular

4. Fixed-current/Base biasing circuit

5. Voltage division biasing circuit
6. Collector to Base /Collector feedback biasing circuit

FIXED-CURRENT / BASE BIASING CIRCUIT

KVL for loop I:
$\mathbf{V}_{\mathbf{E C}}+\mathbf{I}_{\mathbf{C}} \mathbf{R}_{\mathbf{C}}-\mathbf{V}_{\mathbf{C C}}=\mathbf{0}$
$\mathbf{V}_{\mathbf{E C}}+\mathbf{I}_{\mathbf{C}} \mathbf{R}_{\mathrm{C}}=\mathbf{V}_{\mathbf{C C}}$

KVL for loop II:
$V_{E B}+I_{B} R_{B}-V_{B B}=0$
$V_{E B}+I_{B} R_{B}=V_{B B}$
$I_{B}=\left(V_{B B}-V_{E B}\right) / R_{B}$

Since $V_{B B}, V_{E B}$ and R_{B} are fixed, I_{B} is also fixed.

COLLECTOR TO BASE / COLLECTOR FEEDBACK BIASING CIRCUIT

KVL of loop I:
$\mathbf{V}_{E C}+\left(\mathbf{I}_{\mathbf{B}}+\mathbf{I}_{\mathrm{C}}\right) \mathrm{R}_{\mathrm{C}}-\mathbf{V}_{\mathrm{CC}}=\mathbf{0}$
$\mathbf{V}_{E C}+\left(\mathbf{I}_{\mathrm{B}}+\mathrm{I}_{\mathrm{C}}\right) \mathbf{R}_{\mathrm{C}}=\mathbf{V}_{\mathbf{C C}}$
$\mathbf{V}_{E C}+\left(I_{B}+\beta_{D C} I_{B}\right) R_{C}=V_{C C}$ if the minority carrier leakage current is neglected.

KVL of loop II:

$$
\begin{aligned}
& \mathbf{V}_{E B}+I_{B} R_{B}-V_{E C}=0 \\
& I_{B}=\left(V_{E C}-V_{E B}\right) / R_{B}
\end{aligned}
$$

VOLTAGE DIVISION BIASING CIRCUIT

KVL of loop I:
$\mathbf{I}_{\mathbf{E}} \mathbf{R}_{\mathbf{E}}+\mathbf{V}_{\mathbf{E C}}+\mathbf{I}_{\mathbf{C}} \mathbf{R}_{\mathbf{C}}-\mathbf{V}_{\mathbf{C C}}=\mathbf{0}$

KVL of loop II:
$I_{E} R_{E}+V_{E B}+I_{B} R_{T}-V_{T}=0$
$\mathrm{V}_{\mathrm{T}}=\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}} \mathrm{~V}_{\mathrm{CC}}{ }_{-}^{+}$

