CLASS 20

BJT PARAMETERS AND BIASING

In the active region, $I_C \approx I_E$ and is independent of $V_{BC} I_C \approx \alpha_0 I_E$

Observations

- $V_{BC}\uparrow I_C\uparrow$ because when $V_{BC}\uparrow$, the B-C junction becomes more rb. The width of the effective B region (outside depletion) becomes smaller. Recombinations \downarrow . Hence, $I_C\uparrow$.
- At a fixed V_{BC} , if $I_E \uparrow I_C \uparrow$. As $I_C = \alpha_0 I_E$ and $\alpha_0 \approx 1$, $I_C \approx I_E$. Thus, $I_E \uparrow I_C \uparrow$.
- If $V_{BC} = 0$, there still exists a depletion region at the B-C junction. Fixed -ve ions in the depletion region of the C can still manage to attract the holes from B to cross the B-C junction and enter C. I_C exists. If the V_{BC} becomes -ve (i.e. V_C is more +ve than V_B), the width of the depletion region \downarrow and $I_C \downarrow$. When $V_{CB} = V_{ON}$, the depletion region's width ≈ 0 . At this time, the B-C junction becomes fb and $I_C = 0$.

minority E-B depletion B(n)Distribution of B-C depletion carriers in B for a region **pnp** region $P_n(0)$ transistor.

(a) Active mode for $V_{BC} \ge 0$. **(b)** Saturation mode with both E-B and B-C junctions fb.

NORLAILI MOHD NOH 2008/2009

Observations

- Since the difference in the slope is not large when $V_{BC} > 0$ and $V_{BC} = 0$, I_C does not change much.
- $I_C = 0$ when one small forward voltage is supplied across the B-C junction ($V_{CB} \approx 1$ V for Silicon). Under this condition, the transistor is in the saturation region.
- The fb supplied to the B-C junction will increase the hole density at x=Wuntil it reaches a value equals to the hole density at x=0. This means that the hole gradient at x=w and consequently I_C will reduced to 0.

Important observations:

 $\mathbf{I}_{\mathrm{E}} = \mathbf{I}_{\mathrm{B}} + \mathbf{I}_{\mathrm{C}}$

For the CB,

 $\mathbf{I}_{\mathrm{C}} = \boldsymbol{\alpha}_{\mathrm{o}} \, \mathbf{I}_{\mathrm{E}} + \mathbf{I}_{\mathrm{CBO}}$

where I_{CBO} is the C-B current when E is open $(I_E = 0)$ and it is a minority carrier current. $I_{C} = \alpha_{0} (I_{B} + I_{C}) + I_{CBO}$ $I_{C}(1-\alpha_{o}) = \alpha_{o}I_{B} + I_{CBO}$ $I_{C} = (\alpha_{o}I_{B} + I_{CBO}) / (1 - \alpha_{o}) = [\alpha_{o}I_{B} / (1 - \alpha_{o})] +$ $[I_{CBO} / (1 - \alpha_0)]$ output characteristic $I_{C}(mA)$ forward active $\alpha_0 / (1 - \alpha_0) = \beta_{DC} = CE DC$ current gain $I_{\rm R} = 25 \,\mu {\rm A}$ $\beta_{\rm DC} = \Delta I_{\rm C} / \Delta I_{\rm B}$ saturation region $I_{\rm B}=20\,\mu A$ $I_{CEO} = I_{CBO} / (1 - \alpha_0)$ $V_{CB}=0$ -I_B=15 μA where I_{CEO} is the leakage current when B is $I_{\rm B}=10\,\mu A$ open $(I_B = 0)$ and it is a minority carrier 1_{CEC} $I_{B}=0$ $V_{FC}(V)$ V_EC(sat) current.

$$\mathbf{I}_{\mathrm{C}} = \boldsymbol{\beta}_{\mathrm{DC}} \, \mathbf{I}_{\mathrm{B}} + \mathbf{I}_{\mathrm{CEO}}$$

cut-off region

$$I_{CEO} = I_{CBO} / (1 - \alpha_o) = I_{CBO} / \{1 - [\beta_{DC} / (1 + \beta_{DC})]\}$$

$$I_{CEO} = I_{CBO} (1 + \beta_{DC}) / \{(1 + \beta_{DC}) - \beta_{DC}\} = I_{CBO} (1$$

$$\downarrow^{+\beta_{DC}}_{\beta_{DC}} = \alpha_o / (1 - \alpha_o); \text{ this expression shows that}$$

$$\beta_{DC} > 1$$

$$\alpha_o = \beta_{DC} (1 - \alpha_o) = \beta_{DC} - \beta_{DC} \alpha_o$$

$$\alpha_o (1 + \beta_{DC}) = \beta_{DC}$$

$$\alpha_o = \beta_{DC} / (1 + \beta_{DC}); \text{ this expression shows that}$$

$$\alpha_o < 1$$

$$\alpha_o < 1$$

$$\alpha_o < 1$$

$$\alpha_o = 0.99, \beta_{DC} = 0.99 / (1 - 0.99) = 99.$$
If $\alpha_o = 0.998, \beta_{DC} = 0.998 / (1 - 0.998) = 499.$
These results show that a small change in I_B
will cause a large difference in I_C.
From the output characteristics of the CE, there is still output current, I_C, flowing although I_B = 0 and this is the I_{CEO} which is the

leakage current when I_B=0.

BIASING

- The BJT must be biased in order to operate it as an amplifier.
- A DC operating point must be set so that the signal at the input terminal can be amplified and reproduced without any distortion at the output terminal.
- For the CE amplifier, the DC operating point is I_C and V_{CE} . The operating point must be in the active region in order for the BJT to operate as an amplifier.
- The DC operating point is known as the quiescent (Q) point. For the CE amplifier, the Q point is I_{CQ} and V_{CEQ} .
- With the correct biasing, the circuit need not be changed or redesign when another transistor from the same type is substituted or when the temperature changes. Hence, a biasing circuit needs to be stable.

To determine the operating point:

- The DC load line is drawn on the output characteristic to determine the operating current and voltage of the circuit. The intersection of the load line with the I and V axis depends on the circuit's schematic.
- A DC biasing point / quiescent (Q) point is determined from the load line in the active region. The Q point is a point on the load line that represents the current and voltage at the output of a transistor when there is no AC signal. The stability of a biasing point is influenced by the change in the parameters (as an example: β_{DC}) when the transistor is replaced by another transistor of the same type or by the change in temperature.

From Floyd, Electronic Devices, Sixth Edition.

186 BIPOLAR JUNCTION TRANSISTORS (BJTs)

Thermal resistance, junction to case

Thermal resistance, junction to ambient

Symbol	Value	Unit	
VCEO	40	V dc	
$V_{\rm CBO}$	60	V dc	
$V_{\rm EBO}$	6.0	V dc	
$I_{\rm C}$	200	mA dc	
P _D P _D	625 5.0	mW mW/°C Watts mW/°C	
	1.5 12		
$T_{\rm J}, T_{\rm stg}$	-55 to +150	°C	
		$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

 $R_{\theta JC}$

 $R_{\Theta JA}$

Electrical Characteristics ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
OFF Characteristics					
Collector-Emitter breakdown voltage $(I_{\rm C} = 1.0 \text{ mA dc}, I_{\rm P} = 0)$		V _{(BR)CEO}	40	-	V dc
Collector-Base breakdown voltage $(I_c = 10 \text{ uA dc}, I_c = 0)$		V _{(BR)CBO}	60	_	V dc
Emitter-Base breakdown voltage $(I_c = 10 \text{ µA dc}, I_c = 0)$		$V_{(BR)EBO}$	6.0		V de
Base cutoff current $(V_{CE} = 30 \text{ V dc}, V_{EH} = 3.0 \text{ V dc})$		I _{BL}	-	50	nA dc
Collector cutoff current ($V_{CE} = 30 \text{ V dc}, V_{EB} = 3.0 \text{ V dc}$)		I _{CEX}	—	50	nA dc
ON Characteristics					
DC current gain $(I_C = 0.1 \text{ mA dc}, V_{CE} = 1.0 \text{ V dc})$	2N3903 2N3904	h _{FE}	20 40	Ξ	-
$(I_{\rm C} = 1.0 \text{ mA dc}, V_{\rm CE} = 1.0 \text{ V dc})$	2N3903 2N3904		35 70	=	
$(I_{\rm C} = 10 \text{ mA dc}, V_{\rm CE} = 1.0 \text{ V dc})$	2N3903 2N3904		50 100	150 300	
$(I_{\rm C} = 50 \text{ mA dc}, V_{\rm CE} = 1.0 \text{ V dc})$	2N3903 2N3904		30 60	_	
$(I_{\rm C} = 100 \text{ mA dc}, V_{\rm CE} = 1.0 \text{ V dc})$	2N3903 2N3904		15 30	_	
Collector-Emitter saturation voltage $(I_{\rm C} = 10 \text{ mA dc}, I_{\rm B} = 1.0 \text{ mA dc})$ $(I_{\rm C} = 50 \text{ mA dc}, I_{\rm B} = 5.0 \text{ mA dc})$		V _{CE(sat)}	=	0.2 0.3	V dc
Base-Emitter saturation voltage $(I_C = 10 \text{ mA dc}, I_B = 1.0 \text{ mA dc})$ $(I_C = 50 \text{ mA dc}, I_B = 5.0 \text{ mA dc})$		V _{BE(sat)}	0.65	0.85 0.95	V dc

83.3 200 °C/W

°C/W

A FIGURE 4-19

Partial transistor data sheet.

PARAMETERS THAT CAN CHANGE THE Q-POINT

- The DC current gain of the CE, β_{DC} or h_{FE} , for one type of transistor is typically available in a large range, $h_{FE} = 50$ to 300. The large range of β_{DC} or h_{FE} influences the transistor's biasing as
- $I_C = \beta_{DC} I_B$ (if the leakage current is neglected). If I_B is fixed and β_{DC} is varied, I_C will also change. I_{CQ} and V_{CEQ} will change, i.e. the operating point changes.

The transistor might not be operating in the active region.

• Temperature can also change the operating point as the temperature changes the number of minority carriers. This can be seen from the expressions:

$$\mathbf{I}_{\mathrm{C}} = \beta_{\mathrm{DC}} \mathbf{I}_{\mathrm{B}} + \mathbf{I}_{\mathrm{CEO}} = \alpha_{\mathrm{o}} \mathbf{I}_{\mathrm{E}} + \mathbf{I}_{\mathrm{CBO}}$$

where the I_{CEO} and $I_{CBO}\,\,$ are the minority carrier currents.

- The dc load line can be determined by analyzing the transistor circuit. The transistor load line is linear and is in the form y = mx +c. By looking at the output characteristic of the CE, y = I_C , m = slope of the load line, x = V_{EC} saturation of the load line, x = V_{EC} region and c = intersection of the load line with the I_C axis. The load line intersects the V_{EC} axis at $I_C = 0$.
- When I_{BQ} is known, the value of I_{CQ} and V_{ECQ} can be determined by the intersection of the dc load line with the I_{BQ} curve.

- If the quiescent B current is I_{BQ} , then the operation point is Q_1 with output C current, I_{CQ1} , and E-C voltage, V_{CEQ1} .
- If the quiescent B current is 20 μ A, then the operation point is Q₂ with output C current, I_{CQ2}, and E-C voltage, V_{CEQ2}.
- If the quiescent B current is 10 μ A, then the operation point is Q₃ with output C current, I_{CQ3}, and E-C voltage, V_{CEQ3}.

If inaccurate Q is chosen:

- Transistor can be driven into saturation region (if Q is too close to the saturation region)
- Transistor can be driven into cut-off region (if Q is too close to the cut-off region)
- Transistor can be driven into both saturation and cut-off region (the Q point might be at the centre but the signal is too large)

The result is a distorted signal at the output. This defeats the purpose of using the amplifier which is to have an amplified replica of the input signal at the output.

From Floyd, Electronic Devices, Sixth Edition.

NORLAILI MOHD NOH 2008/2009

DC BIASING CIRCUITS

- 1. Fixed-current/Base biasing circuit Unstable
- 2. Collector-Base/Collector feedback biasing circuit Stable
- 3. Voltage division biasing circuit Stable and the most popular

FIXED-CURRENT / BASE BIASING CIRCUIT

KVL for loop I:

 $\mathbf{V}_{\mathrm{EC}} + \mathbf{I}_{\mathrm{C}}\mathbf{R}_{\mathrm{C}} - \mathbf{V}_{\mathrm{CC}} = \mathbf{0}$ $\mathbf{V}_{\mathrm{EC}} + \mathbf{I}_{\mathrm{C}}\mathbf{R}_{\mathrm{C}} = \mathbf{V}_{\mathrm{CC}}$

 $\frac{\text{KVL for loop II:}}{V_{EB} + I_B R_B - V_{BB}} = 0$ $V_{EB} + I_B R_B = V_{BB}$ $I_B = (V_{BB} - V_{EB}) / R_B$

Since V_{BB} , V_{EB} and R_{B} are fixed, $I_{B}\,$ is also fixed.

COLLECTOR TO BASE / COLLECTOR FEEDBACK BIASING CIRCUIT

<u>KVL of loop I:</u> $V_{EC} + (I_B + I_C)R_C - V_{CC} = 0$ $V_{EC} + (I_B + I_C)R_C = V_{CC}$ $V_{EC} + (I_B + \beta_{DC}I_B)R_C = V_{CC}$ if the minority carrier leakage current is neglected.

 R_{C} R_{C} R_{B} R_{B} R_{B} R_{B} R_{C} R_{C} R_{B} R_{C} R_{C

 $\frac{\text{KVL of loop II:}}{\text{V}_{\text{EB}} + \text{I}_{\text{B}}\text{R}_{\text{B}} - \text{V}_{\text{EC}} = 0}$ $\text{I}_{\text{B}} = (\text{V}_{\text{EC}} - \text{V}_{\text{EB}}) / \text{R}_{\text{B}}$

VOLTAGE DIVISION BIASING CIRCUIT

